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Abstract 

Human activities are naturally structured as hierarchies unrolled overtime. For action prediction, temporal 

relations in event sequences are widely exploited by current methods while their semantic coherence across 

different levels of abstraction has not been well explored. In this work we model the hierarchical structure of 

human activities in videos and demonstrate the power of such structure in action prediction. We propose 

Hierarchical Encoder Refresher-Anticipator, a multi-level neural machine that can learn the structure of human 

activities by observing a partial hierarchy of events and roll-out such structure into a future prediction in multiple 

levels of abstraction. We also introduce a new coarse-to-fine action annotation on the Breakfast Actions videos 

to create a comprehensive, consistent, and cleanly structured video hierarchical activity dataset. Through our 

experiments, we examine and rethink the settings and metrics of activity prediction tasks toward unbiased 

evaluation of prediction systems, and demonstrate the role of hierarchical modeling toward reliable and detailed 

long-term action forecasting. 
 

 

1 Introduction 
An AI agent that shares the world with us 

needs to efficiently anticipate human activities to be 

able to react to them. Moreover, the ability to 

anticipate human activities is a strong indicator of the 

competency in human behavior understanding by 

artificial intelligence systems. While video action 

recognition and short-term prediction have made 

much progress, reliable long-term anticipation of 

activities remains challenging as it requires deeper 

understanding of the action patterns. 

The most successful methods for activity 

prediction rely on modeling the continuity of action 

sequences to estimate future occurrence by neural 

networks. However, these networks only consider the 

sequential properties of the action sequence which 

tends to fade and entice error accumulation in far- 

term. This issue suggests exploring the abstract 

structure of actions that spans over the whole 

undertaking of the task. One intuitive way to approach 

this path is to follow the natural human planning 

process that starts with high level tasks then proceeds 

to more refined sub-tasks and detailed actions. An 

example of such structure in an activity is shown in 

Fig. 1. Our quest is to build a neural 

machine that can learn to explore such structures by 

observing a limited section of the video and 

extrapolate the activity structure into the future for 

action prediction. 

 
 

Figure 1: Illustration of a two-level structure of 

activity “have dinners” and a prediction task. 
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We realize this vision by designing a neural 

architecture called Hierarchical Encoder-

Refresher- Anticipator (HERA) for activity 

prediction. HERA consists of three sub-networks 

that consecutively encode the past, refresh the 

transitional states, and decode the future until the 

end of the overall task. The specialty of these 

networks is that their layers represent semantic 

levels of the activity hierarchy, from abstract to 

detail. Each of them operates on its 

own clock while sending its state to parent layer and 

laying out plans for its children. 

This model can be trained end-to-end and learn to 

explore and predict the hierarchical structure of new 

video sequences. We demonstrate the effectiveness 

of HERA in improved long-term predictions, 

increased reliability in predicting unfinished 

activities, and effective predictions of activities at 

different levels of granularity. 

To promote further research in hierarchical activity 

structures, we also introduce a new hierarchical 

action annotation to the popular Breakfast Actions 

dataset. These annotations contain two-level action 

labels that are carefully designed to reflect the clean 

hierarchy of actions following natural human 

planning. In numbers, it includes 25,537 annotations 

in two levels on 1,717 videos spanning 77 hours. 

Once publicly released, this dataset will provide a key 

data source to support advancing deep understanding 

into human behaviors with potential applications in 

detection, segmentation and prediction. 

 

2 Related works 
For prediction of actions in videos, the most popular 

approach is to predict the temporal action segments, 

by jointly predicting the action labels and their 

lengths. Recent advances in this front include Farha 

et al. where random prediction points are used with 

the RNN/CNN-like model. Moving away from 

recurrent networks which tend to accumulate errors, 

Ke et al. used time point as the conditioning factor in 

one-shot prediction approach with the trade-off in 

high prediction cost and sparse predictions. While 

these methods work relatively well in near-term, when 

the actions are predicted farther into the future, 

uncertainty prevents them from having reliable results. 

Variational methods manage uncertainty by using 

probabilistic modeling to achieve more robust 

estimation of inter-arrival time and action length. 

As an action is highly indicative of the next action, 

Miech et al. proposed a model that is a convex 

combination of a “predictive” model and a 

“transitional” model. A memory-based approach 

network was proposed by Gammulle et al. in which 

two streams with independent memories analyze 

visual and label features to predict the next action. 

The hierarchy of activities can be considered in 

atomic scales where small movements constitute an 

action. Early works investigated the hierarchy of 

activity through layered HMM, layered CRF, and 

linguistic-like grammar. More recent works favor 

neural networks due to their strong inductive 

properties. For hierarchy, Recurrent Neural Networks 

(RNN) can be stacked up, but stacking ignores the 

multi-clock nature of a hierarchy unrolled over time. 

In a hierarchical RNN with asynchronous clocks was 

used to model the temporal point processes of activity 

but the information only passes upward and multi- 

level semantics of events are not explored. The idea 

of multi clocks was also explored by Hihi and Bengio 

and Koutnik et al. The drawback of these methods is 

that the periods of the clock must be manually 

defined, which is not adaptive to data structure at 

hand. Chung et al. addressed this problem with a 

hierarchical multi-scale RNN (HM-RNN), which 

automatically learns the latent hierarchical structure. 

This idea has been extended with attention 

mechanism for action recognition. Our hierarchical 

modeling shares the structure exploration 

functionality with these works but is significantly 
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different in the ability to learn the semantic-rich 

structures where layers of hierarchy are associated 

with levels of activity abstraction. In particular, in 

comparison with Clock-work RNN (CW-RNN), 

HERA shares the fact that units can update at 

different rates, but HERA is significantly different 

to CW-RNN in separating the levels of RNN with 

distinctive associated semantics. HERA also 

allows RNN units to control their own clocks and 

their interactions with other units. 

 

3 Learning to abstract and predict 

human actions 
 

Proposed Approach 
The Basic steps in out proposed approach are as 

follows: 

Training: 

Our method takes all possible small atomic action 

units (Actionlet) such as washing vegetable, 

cutting vegetable etc. for training and models the 

relationship between partially observed video and 

trained actionlet at testing phase. Main steps in 

model learning are as follows: 

I. Feature Detection and Extraction: For each 

single atomic action unit we first extracted dense 

Histogram of Optical Flow (HOF), Histogram of 

Gradient (HOG), Motion Boundary Histogram 

(MBH) features. 

II. Dimensionality reduction: These densely 

extracted descriptors are high dimensional. So 

we use Random projection for reducing the 

dimensionality of feature vector 

III. Dictionary learning: Instead of common bag of 

word approach, we use sparse dictionary 

learning. Given a set of input vector for each 

training video, the over complete dictionary is 

leaned and corresponding sparse representation 

is obtained using densely extracted features 

Class specific dictionaries are learned by solving 

sparse approximation problem using K-SVD 

algorithm . 

 

 

Testing: 

I. Temporal segmentation: Given a partial video 

consisting of complex long duration activity, first 

step is to temporally segment the given video such 

that each segment of video consists of meaningful 

atomic action. This step is carried out using Super 

frame segmentation proposed in. The idea is to find 

the boundaries in video where significant changes 

in motion occur, and then cut the video accordingly 

into multiple segments. 

II. Feature Detection and Extraction: For each single 

atomic action unit in testing video extract dense 

HOG, HOF and MBH features. 

III. Classification: The class of each observed segment 

is recognized using learned dictionary and Random 

Sample Reconstruction (RSR). 

IV. Dynamic Prediction: Using the class label for each 

local segment of observed video, predict the global 

class label for unobserved video by computing 

Maximum Aposteriori probability 

 

 

 
 

Fig. 2: Overall Pipeline of Proposed Approach 

 

 

Problem formulation 
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We formalize activity hierarchy H of L levels of a human 

performing a task observable in a video as H 

= {𝐴𝑙}𝑙=1,2,…..,𝐿 where each level 𝐴𝑙 is a sequence of indexed 

actions:  

𝐴𝑙 = {(𝑥𝑙  𝑑𝑙 )}𝑘=1,2,…..𝑛𝑙 ------------ (1) 
Here, 𝑥𝑙 represents the label of k-th action at the l-th 
level, 𝑑𝑙 is its relative duration calculated as its portion 
of the parent activity, and nl indicates the number of 
actions at level l. Each action (𝑥𝑙 𝑑𝑙 ) is associated with a 
subsequence of finer actions at level l + 1, and the latter 
are called children actions of the former. Any children 
subsequence is constrained to exclusively belong to. 
 

 
Figure 3: The Hierarchical Encoder-Refresher- Anticipator 

(HERA) architecture realized in a particular event sequence 

similar to the one in Fig. 1. Square blocks are Encoder 

GRU cells, while triangles and circles are those of 

Refresher and Anticipator, respectively. Color shades 

indicate cells processing different activity families, e.g., the 

first coarse cell (red C1) and its two children (fading red F1 

and F2) process the first activity family {(𝑥𝑐 𝑑𝑐 ), (𝑥𝑓 𝑑𝑓 ), 

(𝑥𝑓 𝑑𝑓 )} .The prediction point 𝑡∗ Happens at the middle of 

(𝑥𝑐 𝑑𝑐 ) and(𝑥𝑓 𝑑𝑓 ). Black arrows indicate recurrent links 

while those in pink and cyan are for downward and upward 

messages, respectively. For visual clarity, optional 

prediction outputs of Encoder cell and feedback inputs of 

Anticipator cell are omitted.  

In the special case of a hierarchy with two levels, members 

of the first level represent coarse activities, and those at the 

second level are called fine actions. In this case, we will 

extend the notation to use the level indices c - for coarse 

and f - for fine in place of numeric indices l = 1 and l = 2. 

An example of a two- level hierarchy is shown in Fig. 1, 

where for a task of have-<dinner>, the first coarse activity 

<prepare>- 

Under this structure, the prediction problem is formed 

when the hierarchy of activities is interrupted at a certain 

time 𝑡∗ indicating the point where observation ends. At this 

time, at every level we have finished events, unfinished 

events, and the task is to predict events yet to start. The 

given observation includes the labels and lengths of the 

finished events, and the labels and partial lengths of the 

unfinished ones. Thus the task boils down to estimating the 

remaining lengths of the unfinished events, and all details 

of the remaining events. 

3.2 Hierarchical Encoder-Refresher 

Anticipator  
We design HERA (Fig. 2) to natively handle the 

hierarchical structure of observation and extend such 

structure to prediction. HERA has three components: the 

Encoder, the Refresher, and the Anticipator. The Encoder 

creates a multilevel representation of the observed events 

which is used by the Refresher and Anticipator to roll-out 

in a similar manner. The Encoder and Anticipator share the 

same hierarchical model design for cross-level interaction 

which we detail next. Modeling activity hierarchy. The 

Encoder and Anticipator share an identical architecture of 

two layers of recurrent neural units (RNN) which are 

chosen to be based on Gated Recurrent Units (GRU). The 

upper layer models the dynamics of coarse activities:  

ℎ𝑖𝑐 = GRU ([(𝑥𝑖𝑐,𝑎𝑖𝑐),𝑚𝑖𝑓→𝑐],ℎ𝑖−1𝑐) ----------- (2)  

The first input to the unit includes a tuple of coarse label 

𝑥𝑖𝑐 and accumulated duration 𝑎𝑖𝑐= Σ𝑑𝑘𝑐𝑖𝑘=1 both 𝑥𝑖𝑐 and 𝑎𝑖𝑐 

are encoded using a random embedding matrix. At the 

Anticipator, these inputs are feedback from the previous 

prediction step. The second input 𝑚𝑖𝑓→𝑐 is the upward 

message that will be discussed later.  

The lower layer is another RNN that is triggered to start 

following the parent’s operation:  

ℎ𝑗𝑓 = GRU ([(𝑥𝑗𝑓,𝑎𝑗𝑓),𝑚𝑖𝑐→𝑓],ℎ𝑗−1𝑓) ----------- (3)  

Where the proportional accumulated duration 𝑎𝑗𝑓 is 

calculated within the parent activity. By design, the two 

layers are asynchronous (i.e. the layers update their hidden 

state independently and whenever fit) as coarse activities 

happen sparser than fine actions. A key feature of HERA is 

the way it connects these two asynchronous concurrent 

processes in a consistent hierarchy by using the cross level 

messages. The downward message 𝑚𝑖𝑐→𝑓 (pink arrows in 

Fig.2) provides instructions from the previous coarse cell 
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to the current fine cells. This message contains the 

previous coarse hidden state ℎ𝑖−1𝑐and can optionally 

contain the parent’s predicted label 𝑥𝑖𝑐. The upward 

message 𝑚𝑖𝑐→𝑓(cyan arrows) to a coarse node i from its 

children contain the information about the detail roll-out 

in the fine actions. It is implemented as the hidden state 

of the last child. 

3.3 Data annotation  
To support the problem structure formulated above we 

reannotated the Breakfast Actions videos , which is the 

largest multi-level video activity dataset publicly 

available. This dataset contains footage of 52 people 

preparing 10 distinct breakfast-related dishes, totaling 

1,717 videos. It originally contains fine- and coarse-level 

annotations of the actions but the hierarchy is incoherent 

(inconsistent semantic abstraction), incomplete (only 804 

of the videos have fine-level annotations), and 

statistically weak (many fine actions are less than a few 

frames). We employed two annotators working 

independently on all 1,717 videos and one verifier who 

checked the consistency of the annotations. Following 

the hierarchy definition in Sec. 3.1, we annotated a two-

level hierarchy of coarse activities and fine actions. Each 

label of activity or action follows the format of <verb-

noun> where verbs and nouns are selected from a 

predefined vocabulary.  

The two vocabulary sets were built by a pilot round of 

annotation. The coarse activities can share the fine action 

labels. For instance, <add-salt> fine action label can be 

used for many coarse activities including <make-salad>, 

<fry-egg>, and <make-sandwich>. In actual annotation, 

we have 30 <verb-noun> pairs for coarse activities and 

140 for fine actions that are active. The new annotation 

resulted in a total of 25,537 label-duration annotations 

with 6,549 at the coarse level and 18,988 at the fine 

level. We call the new annotation Hierarchical Breakfast 

dataset and it is available for download2, alongside the 

source code for HERA.  

3.4 Metrics  
Recent action prediction works [7, 10] widely used 

mean-over-class (MoC) as the key performance metric. 

However, MoC is susceptible to bias in class imbalance 

which exists in action prediction datasets. More 

importantly, as any framebased metrics, it merits any 

correctly predicted frames even when the predicted 

segments are mostly unaligned due to under- or over-

segmentation. We verified these conceptual problems by 

setting up an experiment (detailed in Sec. 4) using an 

under-segmenting dummy predictor that takes advantage 

of the flaw of the metric and win over state-of-the-art 

methods on many settings. We call our dummy predictor 

“under-segmenting” because it predicts that the future 

consists simply of one single long action.  

In the search for better metrics, we examined options 

including the segmental edit distance, the mean-over-frame 

(MoF), and the F1@k. Among them, we learned that the 

most suitable metric for the purpose of action predictionis 

the F1@k for its robustness to variation in video duration 

and minor shifts caused by annotation errors. Furthermore, 

it penalizes both over- and undersegmentations such as 

from our dummy predictor. This metric was previously 

used for temporal detection and segmentation [16]. 

Applied to the prediction task, we first calculate the 

intersection over union (IoU) of the predicted segments 

with the ground-truth. Any overlapping pair with IoU 

surpassing the chosen threshold 0 < k < 1 is counted as 

correct when contributing to the final F1 = 

2×Prec×Recall/Prec+Recall.  

4. Experimental Results  
We have tested our approach on two dataset MHOI and 

MPPI cooking dataset.  

Results on MHOI Dataset:  

MHOI is the daily activity dataset such as “answering a 

phone call”, “drinking tea” etc. In each class of activity 

human interacts with some object. These dataset activities 

are short duration activities consists of around 2 to 4 

atomic actions (actionlet) such as grabbing the object, 

putting it back etc.  

There are total 6 different types of activities each of which 

is performed by 8 to 10 subject 
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Methods Training samples used 
Observation Ration 

20% 40% 60% 80% 100% 

Integral BOW Leave-One-Out 0.32 0.41 0.42 0.50 0.52 

Dynamic BOW Leave-One-Out 0.40 0.47 0.50 0.55 0.52 

BOW+SVM Leave-One-Out 0.30 0.41 0.41 0.39 0.39 

HMM Leave-One-Out 0.23 0.38 0.56 0.47 0.43 

Action Only Model Leave-One-Out 0.37 0.37 0.63 0.65 0.65 

Our Approach 70 percent 0.35 0.40 0.66 0.68 0.68 

 

 

Table 2: Comparison with State-of-The-Art on MHOI Dataset 
 

Fig. 3: Sample Actionlets From MHOI Dataset 
 
 

 

Fig. 4: Sample Actionlets from MPPI Dataset 

Results on MPPI Dataset: 
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MPPI dataset is the cooking activity dataset such as 

“making a salad”, “making a sandwich” etc. 

In each class of activity human interacts with some 

object.These dataset activities are long duration 

complex activities consists of around 20 to 125 atomic 

actions (actionlet) such as cut slices, pour, or spice. 

There are total 65 different activities (actionlets) 

performed by various actors. There are total 14 different 

types of dishes each of which is performed by 3 or 4 

subjects. Totally there are 44  

videos of length approximately 8 hours 

 
 

 
Methods 

Training 

samples 

used 

Observation Ration 

20% 40% 60% 80% 100 

% 

HMM 
Leave- 

One-Out 
0.49 0.53 0.60 0.62 0.65 

Action 
Only 
Model 

Leave- 

One-Out 

 

0.58 

 

0.59 

 

0.64 

 

0.64 

 

0.66 

Our 

Approach 
70 percent 0.52 0.62 0.66 0.68 0.70 

 
Table 3: Comparison with State-of-The-Art on MPPI Dataset 

 
5 Conclusions 

 

We have introduced HERA (Hierarchical Encoder- 

Refresher-Anticipator), a new hierarchical neural 

network for modeling and predicting the long-term 

multilevel action dynamics in videos. To promote 

further research we re-annotated from scratch 1,717 

videos in the Breakfast Actions dataset, creating a new 

and complete semantically coherent annotation of 

activity hierarchy, which we named Hierarchical 

Breakfast. We also reassessed the commonly used MoC 

metric in action prediction, and found it unreliable for 

the task. As a result we investigated multiple metrics 

and found the F1@k metric to reflect human activity best 

among them. We demonstrated that our HERA 

naturally handles hierarchically structured activities, 

including interruptions in the observed activity 

hierarchy. When compared to related methods that do 

not exploit the hierarchical structure in human 

activities, or explore it in a sub- optimal way, HERA 

attained superior results specially in the long-term 

regime. 
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